加入你感兴趣的群
安徽教师招聘考试交流
扫一扫,关注公众号
扫二维码关注微博
安徽敏试教育小编根据大纲要求为您整理了:高中数学基础知识:一次函数。安徽教师资格网还为您提供了精彩的教案示范,更多面试资讯欢迎关注敏试教育。

【知识点】
一、一次函数的定义
在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k、b为常数,k≠0),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。
1.正比例函数是一次函数,但一次函数不一定是正比例函数;
2.一般情况下,一次函数的自变量的取值范围时全体实数;
3.如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数。
二、一次函数基本性质
1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。
在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。
2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。
3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。
4.在两个一次函数表达式中:
当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。
5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
当k1,k2正负相同时,二次函数开口向上;
当k1,k2正负相反时,二次函数开口向下。
二次函数与y轴交点为(0,b2b1)。
6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。
三、一次函数的判定
1.判断一个函数是否是一次函数,就是判断它是否能化成y=kx+b的形式;
2.当k≠0,b=0时,这个函数即是k≠0一次函数,k≠0又是正比例函数;
3.当k=0,b≠0时,这个函数不是一次函数;
4.一次函数的一般形式是关于x的一次二项式,它可以转化为含x、y的二元一次方程。
学习一次函数的时候,要多看一些典型例题,特别是复杂的题目,要从已知中分析、找到隐藏的条件,懂得利用理论知识延伸做题,多思考。
【推荐资料】
扫描二维码,关注微信:安徽敏试教育
回复【面试真题】,查看更多安徽教资面试真题内容
